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§  Remember the reduction operation 

§  Extremely important/frequent operation → Google's MapReduce 

§  Definition prefix sum: 
Given an input sequence 
                                                                            , 
the (inclusive) prefix sum of this sequence is the output sequence 

 
where ⨁ is an arbitrary binary associative operator. 

The exclusive prefix sum is 
 
whereιis the identity/zero element, e.g., 0 for the + operator. 

§  The prefix sum operation is sometimes also called a scan (operation) 

A = (a0, a1, a2, . . . , an�1)

Â = (a0, a1 � a0, a2 � a1 � a0, . . . , an�1 � · · ·� a0)

Â0 = (◆, a0, a1 � a0, . . . , an�2 � · · ·� a0)



G. Zachmann 3 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS 

§  Example: 

§  Input:  

§  Inclusive prefix sum: 

§  Exclusive prefix sum: 

§  Further variant: backward scan 

§  Applications: many! 

§  For example: polynomial evaluation (Horner's scheme) 

§  In general: "What came before/after me?" 

§  "Where do I start writing my data?" 

§  The prefix sum problem appears to be "inherently sequential" 

A = (3 1 7 0 4 1 6 3)

Â = (3 4 11 11 15 16 22 25)

Â0 = (0 3 4 11 11 15 16 22)



G. Zachmann 4 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS 

§  Actually, prefix-sum (a.k.a. scan) was considered such an 
important operation, that it was implemented as a primitive in 
the CM-2 Connection Machine (of Thinking Machines Corp.) 
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Application from "Everyday" Life 

§  Given: 

§  A 100-inch sandwich  

§  10 persons 

§ We know how many inches each  
person wants: [3 5 2 7 28 4 3 0 8 1] 

§  Task: cut the sandwich quickly 

§  Sequential method: one cut after another 
(3 inches first, 5 inches next, …) 

§  Parallel method: 

§  Compute prefix sum 

§  Cut in parallel  

§  How quickly can we compute the prefix sum?? 
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Importance of the Scan Operation 

§  Assume the scan operation is a primitive that has unit time costs, 
then the following algorithms have the following complexities: 

38 CHAPTER 3. THE SCAN PRIMITIVES

Model
Algorithm EREW CRCW Scan

Graph Algorithms
(n vertices, m edges, m processors)
Minimum Spanning Tree lg2 n lgn lgn
Connected Components lg2 n lgn lgn
Maximum Flow n2 lgn n2 lgn n2
Maximal Independent Set lg2 n lg2 n lgn
Biconnected Components lg2 n lgn lgn

Sorting and Merging
(n keys, n processors)

Sorting lgn lgn lgn
Merging lgn lg lgn lg lgn

Computational Geometry
(n points, n processors)

Convex Hull lg2 n lgn lgn
Building a K-D Tree lg2 n lg2 n lgn
Closest Pair in the Plane lg2 n lgn lg lgn lgn
Line of Sight lgn lgn 1

Matrix Manipulation
(n×n matrix, n2 processors)

Matrix ×Matrix n n n
Vector ×Matrix lgn lgn 1
Matrix Inversion n lgn n lgn n

Table 3.2: Algorithmic Justification. The scan primitives improves the asymptotic running
time of many algorithms by an O(lgn) factor over a EREW model and some by an O(lgn)
factor over the CRCW model.

EREW =  
exclusive-read,  
exclusive-write PRAM 
CRCW =  
concurrent-read,  
concurrent-write PRAM 
Scan =  
EREW with scan as 
unit-cost primitive 

Guy E. Blelloch: 
Vector Models for  
Data-Parallel Computing 
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Example: Line-of-Sight 

§  Given: 
§  Terrain as grid of height values (height map) 

§  Point X in the grid (our "viewpoint", has a height, too) 

§  Horizontal viewing direction (we can look up and down, but not to 
the left or right) 

§  Problem: find all visible points in the grid along the view direction 

§  Assumption: we already have a vector of heights containing all 
grid cells' heights that are in our horizontal viewing direction 
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3.3. EXAMPLE: LINE-OF-SIGHT 41

Figure 3.1: The line-of-sight problem for a single ray. The X marks the observation point.
The visible points are shaded. A point on the ray is visible if no previous point has a greater
angle. The angle is calculated as arctan(altitude/distance).
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§  The algorithm: 

1.  Convert height vector to vertical angles (as 
seen from X) → A 

-  One thread per vector element 

2.  Perform max-scan on angle vector (i.e., prefix 
sum with the max operator) → Â 

3.  Test  âi < ai , if true then grid point is visible 
form X 

Altitude vector 

Angle vector (A) 

Max-scan of angle vector (Â) 



G. Zachmann 9 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS 

The Hillis-Steele Algorithm 

§  Iterate  
log(n)  
times: 

 

§  Notes: 

§  Blue = active threads 

§  Each thread reads from "another" thread, too → must use double 
buffering and barrier synchronization 

A: 3 1 7 0 4 1 6 3 

B: 3 4 8 7 4 5 7 9 

d = 0, stride 1 

A: 3 4 11 11 12 12 11 14 

B: 3 4 11 11 15 16 22 25 

d = 1, stride 2 

d = 2, stride 4 



G. Zachmann 10 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS 

§  The algorithm as pseudo-code: 

 

§  Note: we omitted the double-buffering and the barrier synchronization 

forall i in parallel do      // n threads 
   for d = 0...log(n)-1: 
      if i >= 2^d : 
         x[i] = x[ i − 2^d ] + x[i] 
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Terminology 

§  Algorithmic technique: recursive/iterative doubling technique = 
"Accesses or actions are governed by increasing powers of 2" 

§  Remember the algo for maintaining dynamic arrays? (2nd/1st semester) 

§  Definitions:  

§  Depth D(n) = "#iterations" = parallel running time Tp(n) 

-  (Think of the loops unrolled and "baked" into a hardware pipeline) 

§ Work W(n) = total number of operations performed by all threads together 

-  With sequential algorithms, work complexity = time complexity 

§ Work-efficient: 
A parallel algorithm is called work-efficient, if it performs no more work than 
the sequential one 
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§  Visual definition of depth/work complexity: 

§  Express computation as a dependence graph of parallel tasks: 

§ Work complexity = total amount of work performed by all tasks 

§  Depth complexity = length of the "critical path" in the graph 

§  Parallel algorithms should be always both work and depth efficient! 

Parallel, independent tasks 
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§  Complexity of the Hillis-Steele algorithm: 

§  Depth d = Tp(n) = # iterations = log(n)  → good 

§  In iteration d: 

§  Total number of adds = work complexity 

§  Conclusion: not work-efficient 

§  A factor of log(n) can hurt: 20x  for 106 elements 
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The Blelloch Algorithm (for Exclusive Scan) 

§  Consists of two phases: up-sweep (= reduction) and down-sweep 

1. Up-sweep: 

 

 

§  Note: no double-buffering needed! (sync is still needed, of course) 

3 1 7 0 4 1 6 3 

3 4 7 7 4 5 6 9 

3 4 7 11 4 5 6 14 

3 4 7 11 4 5 6 25 

d = 0, stride 1 

d = 1, stride 2 

d = 2, stride 4 
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2. Down-sweep: 

§  First: zero last element (might seem strange at first thought) 

§  Dashed line means "store into" (overwriting previous content) 

 

3 4 7 0 4 5 6 11 

3 4 7 11 4 5 6 0 

3 0 7 4 4 11 6 16 

0 3 4 11 11 15 16 22 

d = 0,  
stride 4 

d = 1,  
stride 2 

d = 2,  
stride 1 
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§  Depth complexity: 

§  Performs 2.log(n) iterations 

§  D(n) ∈ O( log n ) 

§  Work-efficiency: 

§  Number of adds: n/2 + n/4 + .. + 1 + 1 + … + n/4 + n/2 

§ Work complexity W(n) = 2.n = O(n) 

§  The Blelloch algorithm is work efficient 

§  This up-sweep followed by down-sweep is a very common pattern 
in massively parallel algorithms! 

§  Limitations so far: 

§ Only one block of threads (what if the array is larger?) 

§ Only arrays with power-of-2 size 
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Working on Arbitrary Length Input 

§  One kernel launch handles up to 2*blockDim.x elements 

§  Partition array into blocks 

§  Choose fairly small block size = 2k, so we can easily pad array to b.2k 

1. Run up-sweep on each block 

2. Each block writes the sum of its section (= last element after up-
sweep) into a Sums array at blockIdx.x  

3. Run prefix sum on the Sums array 

4. Perform down-sweep on each block 

5. Add Sums[blockIdx.x] to each element in "next" array section 
blockIdx.x+1 
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Up-sweep block 0 Up-sweep block 1 Up-sweep block 2 Up-sweep block 3 

Down-sweep block 0 Down-sweep block 1 Down-sweep block 2 Down-sweep block 3 

Store block sums to auxiliary array Sums 

Scan auxiliary array Sums 

"Seed" last value in block i+1 
with Sums[i], instead of 0 
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Further Optimizations 

§  A real implementation needs to do all the nitty-gritty optimizations 

§  E.g., worry about bank conflicts (very technical, pretty complex) 

§  A simple & effective technique: 

§  Each thread i loads 4 floats from global memory → float4 x 

§  Store Σj=1…4  x[i][j] in shared memory a[i] 

§  Compute the prefix-sum on a ⟶ â  

§  Store 4 values back in global memory: 

- â[i] + x[0] 

- â[i] + x[0] + x[1] 

- â[i] + x[0] + x[1] + x[2] 

- â[i] + x[0] + x[1] + x[2] + x[3] 

§  Experience shows: 2x faster 

§ Why does this improve performance? → Brent's theorem 


