Bremen

Massively Parallel Algorithms Parallel Prefix Sum And Its Applications

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

- Remember the *reduction* operation
 - Extremely important/frequent operation → Google's *MapReduce*
- Definition prefix sum:

Given an input sequence

$$A=\left(a_{0} ext{,}\,a_{1} ext{,}\,a_{2} ext{,}\dots ext{,}\,a_{n-1}
ight)$$
 ,

the (inclusive) prefix sum of this sequence is the output sequence

$$\hat{A}=(a_0$$
 , $a_1\oplus a_0$, $a_2\oplus a_1\oplus a_0$, \ldots , $a_{n-1}\oplus \cdots \oplus a_0)$

where \oplus is an arbitrary binary associative operator.

The exclusive prefix sum is

$$\hat{A}' = (\iota, a_0, a_1 \oplus a_0, \ldots, a_{n-2} \oplus \cdots \oplus a_0)$$

where ι is the identity/zero element, e.g., 0 for the + operator.

The prefix sum operation is sometimes also called a scan (operation)

Example:

Bremen

ແມ

- Input: $A = (3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3)$
- Inclusive prefix sum: $\hat{A} = (3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25)$
- Exclusive prefix sum: $\hat{A}' = (0 \ 3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22)$
- Further variant: backward scan
- Applications: many!
 - For example: polynomial evaluation (Horner's scheme)
 - In general: "What came before/after me?"
 - "Where do I start writing my data?"
- The prefix sum problem appears to be "inherently sequential"

Actually, prefix-sum (a.k.a. scan) was considered such an important operation, that it was implemented as a primitive in the CM-2 Connection Machine (of Thinking Machines Corp.)

- 10 persons
- We know how many inches each person wants: [3 5 2 7 28 4 3 0 8 1]

Application from "Everyday" Life

- Task: cut the sandwich quickly
- Sequential method: one cut after another
 (3 inches first, 5 inches next, ...)
- Parallel method:
 - Compute prefix sum
 - Cut in parallel
 - How quickly can we compute the prefix sum??

Bremen

W

Assume the scan operation is a primitive that has unit time costs, then the following algorithms have the following complexities:

	Model		
Algorithm	EREW	CRCW	Scan
Graph Algorithms			
(<i>n</i> vertices, <i>m</i> edges, <i>m</i> processors)			
Minimum Spanning Tree	$lg^2 n$	lg <i>n</i>	lg <i>n</i>
Connected Components	$lg^2 n$	lg <i>n</i>	lg <i>n</i>
Maximum Flow	$n^2 \lg n$	$n^2 \lg n$	n^2
Maximal Independent Set	$lg^2 n$	$lg^2 n$	lg <i>n</i>
Biconnected Components	$lg^2 n$	lg <i>n</i>	lg n
Sorting and Merging			
(<i>n</i> keys, <i>n</i> processors)			
Sorting	lg n	lg n	lg n
Merging	lg n	lg lg n	lg lg n
Computational Geometry			
(n points, n processors)			
Convex Hull	$lg^2 n$	lg <i>n</i>	lg n
Building a K-D Tree	$lg^2 n$	$lg^2 n$	lg <i>n</i>
Closest Pair in the Plane	$lg^2 n$	lg <i>n</i> lg lg n	lg <i>n</i>
Line of Sight	lg n	lg n	1
Matrix Manipulation			
$(n \times n \text{ matrix}, n^2 \text{ processors})$			
Matrix \times Matrix	n	n	n
Vector \times Matrix	lg n	lg <i>n</i>	1
Matrix Inversion	nlgn	nlgn	п

EREW = exclusive-read, exclusive-write PRAM *CRCW* = concurrent-read, concurrent-write PRAM *Scan* = EREW with scan as unit-cost primitive

Guy E. Blelloch: Vector Models for Data-Parallel Computing

Example: Line-of-Sight

- Given:
 - Terrain as grid of height values (*height map*)
 - Point X in the grid (our "viewpoint", has a height, too)
 - Horizontal viewing direction (we can look up and down, but not to the left or right)
- Problem: find all visible points in the grid along the view direction
- Assumption: we already have a vector of heights containing all grid cells' heights that are in our horizontal viewing direction

- The algorithm:
 - 1. Convert height vector to vertical angles (as seen from X) $\rightarrow A$
 - One thread per vector element
 - 2. Perform *max-scan* on angle vector (i.e., prefix sum with the max operator) $\rightarrow \hat{A}$
 - 3. Test $\hat{a}_i < a_i$, if true then grid point is visible form X

The Hillis-Steele Algorithm

Notes:

Bremen

W

- Blue = active threads
- Each thread reads from "another" thread, too → must use double buffering and barrier synchronization

The algorithm as pseudo-code:

Note: we omitted the double-buffering and the barrier synchronization

- Algorithmic technique: recursive/iterative doubling technique = "Accesses or actions are governed by increasing powers of 2"
 - Remember the algo for maintaining dynamic arrays? (2nd/1st semester)
- Definitions:
 - Depth $D(n) = "#iterations" = parallel running time T_p(n)$
 - (Think of the loops unrolled and "baked" into a hardware pipeline)
 - Work W(n) = total number of operations performed by all threads together
 - With *sequential* algorithms, *work* complexity = time complexity
 - Work-efficient:

A parallel algorithm is called *work-efficient*, if it performs no more work than the sequential one

- Visual definition of depth/work complexity:
 - Express computation as a dependence graph of parallel *tasks*:

- Work complexity = total amount of work performed by all tasks
- Depth complexity = length of the "critical path" in the graph
- Parallel algorithms should be always both work and depth efficient!

- Complexity of the Hillis-Steele algorithm:
 - Depth $d = T_p(n) = \#$ iterations = log(n) \rightarrow good
 - In iteration d: $n 2^{d-1}$ adds
 - Total number of adds = work complexity

$$W(n) = \sum_{d=1}^{\log_2 n} (n-2^{d-1}) = \sum_{d=1}^{\log_2 n} n - \sum_{d=1}^{\log_2 n} 2^{d-1} = n \cdot \log n - n \in O(n \log n)$$

- Conclusion: not work-efficient
 - A factor of log(*n*) can hurt: 20x for 10⁶ elements

- Consists of two phases: up-sweep (= reduction) and down-sweep
- 1. Up-sweep:

Bremen

W

Note: no double-buffering needed! (sync is still needed, of course)

2. Down-sweep:

• First: zero last element (might seem strange at first thought)

Dashed line means "store into" (overwriting previous content)

- Depth complexity:
 - Performs 2·log(n) iterations
 - $D(n) \in O(\log n)$
- Work-efficiency:
 - Number of adds: n/2 + n/4 + .. + 1 + 1 + ... + n/4 + n/2
 - Work complexity $W(n) = 2 \cdot n = O(n)$
 - The Blelloch algorithm is *work efficient*
- This up-sweep followed by down-sweep is a very common pattern in massively parallel algorithms!
- Limitations so far:
 - Only one block of threads (what if the array is larger?)
 - Only arrays with power-of-2 size

Working on Arbitrary Length Input

- One kernel launch handles up to 2*blockDim.x elements
- Partition array into blocks
 - Choose fairly small block size = 2^k , so we can easily pad array to $b \cdot 2^k$
- 1. Run up-sweep on each block
- 2. Each block writes the sum of its section (= last element after upsweep) into a Sums array at blockIdx.x
- 3. Run prefix sum on the Sums array
- 4. Perform down-sweep on each block
- 5. Add Sums[blockIdx.x] to each element in "next" array section blockIdx.x+1

Further Optimizations

- A *real* implementation needs to do all the nitty-gritty optimizations
 - E.g., worry about bank conflicts (very technical, pretty complex)
- A simple & effective technique:
 - Each thread i loads 4 floats from global memory $\rightarrow \texttt{float4} \times$
 - Store Σ_{j=1...4} x[i][j] in shared memory a[i]
 - Compute the prefix-sum on $\mathbf{a} \rightarrow \hat{\mathbf{a}}$
 - Store 4 values back in global memory:
 - $-\hat{a}[i] + x[0]$
 - $-\hat{a}[i] + x[0] + x[1]$
 - $-\hat{a}[i] + x[0] + x[1] + x[2]$
 - $-\hat{a}[i] + x[0] + x[1] + x[2] + x[3]$
 - Experience shows: 2x faster
 - Why does this improve performance? → Brent's theorem