
Massively Parallel Algorithms
Parallel Prefix Sum
And Its Applications

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  Remember the reduction operation

§  Extremely important/frequent operation → Google's MapReduce

§  Definition prefix sum:
Given an input sequence
 ,
the (inclusive) prefix sum of this sequence is the output sequence

where ⨁ is an arbitrary binary associative operator.

The exclusive prefix sum is

whereιis the identity/zero element, e.g., 0 for the + operator.

§  The prefix sum operation is sometimes also called a scan (operation)

A = (a0, a1, a2, . . . , an�1)

Â = (a0, a1 � a0, a2 � a1 � a0, . . . , an�1 � · · ·� a0)

Â0 = (◆, a0, a1 � a0, . . . , an�2 � · · ·� a0)

G. Zachmann 3 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  Example:

§  Input:

§  Inclusive prefix sum:

§  Exclusive prefix sum:

§  Further variant: backward scan

§  Applications: many!

§  For example: polynomial evaluation (Horner's scheme)

§  In general: "What came before/after me?"

§  "Where do I start writing my data?"

§  The prefix sum problem appears to be "inherently sequential"

A = (3 1 7 0 4 1 6 3)

Â = (3 4 11 11 15 16 22 25)

Â0 = (0 3 4 11 11 15 16 22)

G. Zachmann 4 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  Actually, prefix-sum (a.k.a. scan) was considered such an
important operation, that it was implemented as a primitive in
the CM-2 Connection Machine (of Thinking Machines Corp.)

G. Zachmann 5 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Application from "Everyday" Life

§  Given:

§  A 100-inch sandwich

§  10 persons

§ We know how many inches each
person wants: [3 5 2 7 28 4 3 0 8 1]

§  Task: cut the sandwich quickly

§  Sequential method: one cut after another
(3 inches first, 5 inches next, …)

§  Parallel method:

§  Compute prefix sum

§  Cut in parallel

§  How quickly can we compute the prefix sum??

G. Zachmann 6 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Importance of the Scan Operation

§  Assume the scan operation is a primitive that has unit time costs,
then the following algorithms have the following complexities:

38 CHAPTER 3. THE SCAN PRIMITIVES

Model
Algorithm EREW CRCW Scan

Graph Algorithms
(n vertices, m edges, m processors)
Minimum Spanning Tree lg2 n lgn lgn
Connected Components lg2 n lgn lgn
Maximum Flow n2 lgn n2 lgn n2
Maximal Independent Set lg2 n lg2 n lgn
Biconnected Components lg2 n lgn lgn

Sorting and Merging
(n keys, n processors)

Sorting lgn lgn lgn
Merging lgn lg lgn lg lgn

Computational Geometry
(n points, n processors)

Convex Hull lg2 n lgn lgn
Building a K-D Tree lg2 n lg2 n lgn
Closest Pair in the Plane lg2 n lgn lg lgn lgn
Line of Sight lgn lgn 1

Matrix Manipulation
(n×n matrix, n2 processors)

Matrix ×Matrix n n n
Vector ×Matrix lgn lgn 1
Matrix Inversion n lgn n lgn n

Table 3.2: Algorithmic Justification. The scan primitives improves the asymptotic running
time of many algorithms by an O(lgn) factor over a EREW model and some by an O(lgn)
factor over the CRCW model.

EREW =
exclusive-read,
exclusive-write PRAM
CRCW =
concurrent-read,
concurrent-write PRAM
Scan =
EREW with scan as
unit-cost primitive

Guy E. Blelloch:
Vector Models for
Data-Parallel Computing

G. Zachmann 7 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Example: Line-of-Sight

§  Given:
§  Terrain as grid of height values (height map)

§  Point X in the grid (our "viewpoint", has a height, too)

§  Horizontal viewing direction (we can look up and down, but not to
the left or right)

§  Problem: find all visible points in the grid along the view direction

§  Assumption: we already have a vector of heights containing all
grid cells' heights that are in our horizontal viewing direction

G. Zachmann 8 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

3.3. EXAMPLE: LINE-OF-SIGHT 41

Figure 3.1: The line-of-sight problem for a single ray. The X marks the observation point.
The visible points are shaded. A point on the ray is visible if no previous point has a greater
angle. The angle is calculated as arctan(altitude/distance).

3.3. EXAMPLE: LINE-OF-SIGHT 41

Figure 3.1: The line-of-sight problem for a single ray. The X marks the observation point.
The visible points are shaded. A point on the ray is visible if no previous point has a greater
angle. The angle is calculated as arctan(altitude/distance).

3.3. EXAMPLE: LINE-OF-SIGHT 41

Figure 3.1: The line-of-sight problem for a single ray. The X marks the observation point.
The visible points are shaded. A point on the ray is visible if no previous point has a greater
angle. The angle is calculated as arctan(altitude/distance).

§  The algorithm:

1.  Convert height vector to vertical angles (as
seen from X) → A

-  One thread per vector element

2.  Perform max-scan on angle vector (i.e., prefix
sum with the max operator) → Â

3.  Test âi < ai , if true then grid point is visible
form X

Altitude vector

Angle vector (A)

Max-scan of angle vector (Â)

G. Zachmann 9 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

The Hillis-Steele Algorithm

§  Iterate
log(n)
times:

§  Notes:

§  Blue = active threads

§  Each thread reads from "another" thread, too → must use double
buffering and barrier synchronization

A: 3 1 7 0 4 1 6 3

B: 3 4 8 7 4 5 7 9

d = 0, stride 1

A: 3 4 11 11 12 12 11 14

B: 3 4 11 11 15 16 22 25

d = 1, stride 2

d = 2, stride 4

G. Zachmann 10 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  The algorithm as pseudo-code:

§  Note: we omitted the double-buffering and the barrier synchronization

forall i in parallel do // n threads
 for d = 0...log(n)-1:
 if i >= 2^d :
 x[i] = x[i − 2^d] + x[i]

G. Zachmann 12 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Terminology

§  Algorithmic technique: recursive/iterative doubling technique =
"Accesses or actions are governed by increasing powers of 2"

§  Remember the algo for maintaining dynamic arrays? (2nd/1st semester)

§  Definitions:

§  Depth D(n) = "#iterations" = parallel running time Tp(n)

-  (Think of the loops unrolled and "baked" into a hardware pipeline)

§ Work W(n) = total number of operations performed by all threads together

-  With sequential algorithms, work complexity = time complexity

§ Work-efficient:
A parallel algorithm is called work-efficient, if it performs no more work than
the sequential one

G. Zachmann 13 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  Visual definition of depth/work complexity:

§  Express computation as a dependence graph of parallel tasks:

§ Work complexity = total amount of work performed by all tasks

§  Depth complexity = length of the "critical path" in the graph

§  Parallel algorithms should be always both work and depth efficient!

Parallel, independent tasks

G. Zachmann 14 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  Complexity of the Hillis-Steele algorithm:

§  Depth d = Tp(n) = # iterations = log(n) → good

§  In iteration d:

§  Total number of adds = work complexity

§  Conclusion: not work-efficient

§  A factor of log(n) can hurt: 20x for 106 elements

n � 2d�1 adds

W (n) =

log

2

nX

d=1

(n � 2

d�1

) =

log

2

nX

d=1

n �
log

2

nX

d=1

2

d�1

= n·log n � n 2 O
�
n log n

�

G. Zachmann 15 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

The Blelloch Algorithm (for Exclusive Scan)

§  Consists of two phases: up-sweep (= reduction) and down-sweep

1. Up-sweep:

§  Note: no double-buffering needed! (sync is still needed, of course)

3 1 7 0 4 1 6 3

3 4 7 7 4 5 6 9

3 4 7 11 4 5 6 14

3 4 7 11 4 5 6 25

d = 0, stride 1

d = 1, stride 2

d = 2, stride 4

G. Zachmann 16 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

2. Down-sweep:

§  First: zero last element (might seem strange at first thought)

§  Dashed line means "store into" (overwriting previous content)

3 4 7 0 4 5 6 11

3 4 7 11 4 5 6 0

3 0 7 4 4 11 6 16

0 3 4 11 11 15 16 22

d = 0,
stride 4

d = 1,
stride 2

d = 2,
stride 1

G. Zachmann 17 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

§  Depth complexity:

§  Performs 2.log(n) iterations

§  D(n) ∈ O(log n)

§  Work-efficiency:

§  Number of adds: n/2 + n/4 + .. + 1 + 1 + … + n/4 + n/2

§ Work complexity W(n) = 2.n = O(n)

§  The Blelloch algorithm is work efficient

§  This up-sweep followed by down-sweep is a very common pattern
in massively parallel algorithms!

§  Limitations so far:

§ Only one block of threads (what if the array is larger?)

§ Only arrays with power-of-2 size

G. Zachmann 18 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Working on Arbitrary Length Input

§  One kernel launch handles up to 2*blockDim.x elements

§  Partition array into blocks

§  Choose fairly small block size = 2k, so we can easily pad array to b.2k

1. Run up-sweep on each block

2. Each block writes the sum of its section (= last element after up-
sweep) into a Sums array at blockIdx.x

3. Run prefix sum on the Sums array

4. Perform down-sweep on each block

5. Add Sums[blockIdx.x] to each element in "next" array section
blockIdx.x+1

G. Zachmann 19 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Up-sweep block 0 Up-sweep block 1 Up-sweep block 2 Up-sweep block 3

Down-sweep block 0 Down-sweep block 1 Down-sweep block 2 Down-sweep block 3

Store block sums to auxiliary array Sums

Scan auxiliary array Sums

"Seed" last value in block i+1
with Sums[i], instead of 0

G. Zachmann 20 Prefix-Sum Massively Parallel Algorithms 29 May 2013 SS

Further Optimizations

§  A real implementation needs to do all the nitty-gritty optimizations

§  E.g., worry about bank conflicts (very technical, pretty complex)

§  A simple & effective technique:

§  Each thread i loads 4 floats from global memory → float4 x

§  Store Σj=1…4 x[i][j] in shared memory a[i]

§  Compute the prefix-sum on a ⟶ â

§  Store 4 values back in global memory:

- â[i] + x[0]

- â[i] + x[0] + x[1]

- â[i] + x[0] + x[1] + x[2]

- â[i] + x[0] + x[1] + x[2] + x[3]

§  Experience shows: 2x faster

§ Why does this improve performance? → Brent's theorem

